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Recent work has shown that chaotic systems possessing invariant manifolds of lower dimension than that of
the full phase space can exhibit an interesting class of phenomena including riddled basins, intermingled basins
and on-off intermittency. In particular, if a physical system is characterized by intermingled basins, no finite
computation can determine the fate of an exactly given initial condition. In other words, the dynamics is
uncomputable. In this work we wish to show that intermingled basins can be easily realized in the context of
coupled oscillators and synchronized chaos. This opens the possibility of investigating these phenomena in
laboratory experiments.@S1063-651X~96!08809-5#

PACS number~s!: 05.45.1b

Consider anm-dimensional dynamical system that pos-
sesses ann-dimensional invariant manifold wheren,m.
Here by invariant we mean that a trajectory initialized in the
manifold stays there for all time. Suppose that the dynamics
restricted to the invariant manifold has two or more chaotic
attractors. Depending on how small perturbations transversal
to the manifold behave under the equations of motion, these
restricted attractors may or may not be attractors for the full
phase space. Recently, it has been shown that, when these
restricted attractors are also attractors for the full system,
under certain conditions, their basins of attraction are inter-
mingled@1–3#. By this we mean that the basins are so finely
mixed that every point in the basin of one attractor has points
from the basins of other attractors arbitrarily nearby, and vice
versa. It is further pointed out in Ref.@3# that when this type
of basin structure occurs, the system’s dynamics become
qualitatively undecidable@4#. That is, no finite computation
can determine the fate of a typical initial condition even if
that initial condition is given with infinite precision.

Much of our current understanding of the characteristics
of intermingled basins is obtained through the study of dis-
crete maps@1#. Sommerer and Ott@3# examine a physical
model displaying intermingled basins in which a particle
moves under periodic forcing in a two-dimensional potential.
A similar physical system with multiple invariant manifolds
is considered by Lai and Grebogi in Ref.@2#. In this paper we
report our observation of intermingled basins in systems of
coupled nonlinear oscillations exhibiting synchronized
chaos. Here the synchronization manifold is the requisite
lower dimensional invariant manifold. Given that the litera-
ture is replete with examples of coupled physical devices
~e.g., nonlinear circuits! displaying synchronized chaotic be-
havior, we thus believe that our result helps to pave the way
for future experimental investigations of intermingled basins
and related phenomena. We illustrate our main point using
two examples, one a coupled Duffing oscillator and the other
a coupled map. The reader is referred to Refs.@5,6# for a
sample of works dealing with other topics such as riddled
basins and on-off intermittency that also arise in systems
having invariant manifolds of lower dimensions.

Example 1: The Coupled Duffing Oscillator. We express a
single periodically driven Duffing oscillator as

ẍ1m ẋ1a~x2x3!5A sin~vt !. ~1!

Form50.632,a524,A51.011, andv52.1235, this equa-
tion has two chaotic attractors@3#, one lying in the region
x.0 which we denoteA1, and the other in the region
x,0 which we denoteA2. The coupled Duffing oscillator
we treat in this example is written as

ẍ1m ẋ1a~x2x3!1p~x2y!1q~x22y2!5A sin~vt !,
~2!

ÿ1m ẏ1a~y2y3!1p~y2x!1q~y22x2!5A sin~vt !.
~3!

Our experience indicates that it is essential to include non-
linear coupling terms in this model for the occurrence of
intermingled basins. In what follows we fixq50.005 and
vary p as a parameter. All other parameters have values as
given above. This coupled oscillator is a five dimensional
system. Strobing the equations at timestn5n2p/v, we ob-
tain a four dimensional Poincare´ map (m54) for x, ẋ, y, and
ẏ. We henceforth carry out our discussion in terms of this
Poincare´ map.

In the absence of coupling the two oscillators are identi-
cal. Note that ifx(t)5y(t) is plugged into Eqs.~2! and~3!,
the equations are satisfied, meaning that synchronization of
chaos is possible for the system. The two dimensional syn-
chronization manifold (n52) is defined byx5y and ẋ5 ẏ,
and is invariant under the dynamics. In the synchronization
manifold the dynamics is identical to that of a single Duffing
oscillator. That is, there are two chaotic attractors in this
manifold denoted byA1 andA2. To determine whether the
synchronization manifold is attracting, that is, to determine
whetherA1 andA2 are attractors in the full phase space, we
compute the largest transversal Lyapunov exponents as a
function of p for both attractors. The result is displayed in
Fig. 1, with the solid line forA2 and the dashed line for
A1. The values of p1 and p2 are determined to be
p150.1946 andp250.2103. Forp.p2, both largest trans-
versal Lyapunov exponents are negative, indicating thatA1

andA2 are global attractors~in the sense of Milnor@7#!. Our
numerical basin result in Fig. 2 strongly suggests that their
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basins of attraction are intermingled. Specifically, let
p50.25 and consider a two dimensional plane defined by
y5x1d and ẏ5 ẋ. This plane is parallel to the synchroniza-
tion manifold,x5y and ẋ5 ẏ, which is also a two dimen-
sional plane. The distance between the two parallel planes is
d. For Fig. 2 we used50.01. The horizontal axis isx and
the vertical axis isẋ. The initial conditions are placed on a
uniform grid of 3003300 points. If a point in this grid goes
to the attractorA2 after 400 periods of external driving, we
plot a dot at the point, and if a point goes to the attractor
A1 we leave the point blank. Longer iteration times are also
used in our numerical simulations, and they yield similar
results. Since the plane used in Fig. 2 is rather close to the
synchronization manifold, the basin structure in Fig. 2~a!
roughly resembles that of a single Duffing oscillator@see Fig.
2~a! of Ref. @3##. The important difference here is that both
basins contain no solid regions. This is demonstrated using
two successive enlargements in Figs. 2~b! and 2~c!. At a
given resolution one may find some regions showing just one
color. Upon magnification, however, points belonging to the
other basin begin to emerge in the region. This process ap-
pears to go onad infinitum, implying that neither basin con-
tains solid regions. This result leads us to the conjecture that
the basins in Fig. 2 are intermingled.

Further evidence of intermingling is provided by examin-
ing the dynamics forp,p2. Specifically, forp1,p,p2, the
largest transversal Lyapunov exponent forA2 becomes posi-
tive, andA1 remains the only global attractor of the system.
A typical trajectory, before it finally settles onA1, under-
goes an intermittent transient process in the variablex-y, as
illustrated in Fig. 3~a! wherep50.195. The key point here is
contained in Fig. 3~b!, where we see that the intermittent
trajectory jumps back and forth betweenA1 andA2 ~a phe-
nomenon we call communication!, and comes arbitrarily
close to both of them during the process. The average length
of the transient gets longer asp gets closer top2 from below.
This strongly indicates that asp is increased beyondp2,
from continuity, we can still expect that points arbitrarily

close to, say,A2 can move toA1 as time evolves, and vice
versa. This means that there are points which are arbitrarily
close to one attractor actually belong to the basin of the
other.

For p,p1 both A2 and A1 become transversally un-
stable. Forp slightly less thanp1 we observe sustained on-
off intermittency an example of which is shown in Fig. 4~a!
for p50.19. Again during the on-off intermittent process the
trajectory communicates betweenA1 and A2 @Fig. 4~b!#.

FIG. 1. The largest transversal Lyapunov exponent forA2

~solid line! and for A1 ~dashed line!. The model is the coupled
Duffing oscillator Eqs.~2! and ~3!.

FIG. 2. The basin structures for the coupled Duffing oscillator.
~b! is the enlargement of the marked box in~a!, and ~c! is the
enlargement of the marked box in~b!. The horizontal axis isx and
the vertical axis isẋ. Herep50.25.p2.

2490 54MINGZHOU DING AND WEIMING YANG



Note that, atp50.19, the largest transversal Lyapunov ex-
ponent forA1 is only slightly positive and is much smaller
than that forA2. This means thatA1 is a much weaker
transversal repeller thanA2. Reflected in the temporal dy-
namics, the trajectory tends to stay longer nearA1 than near
A2.

The findings we have made thus far can be summarized as
follows. Forp.p2 we observe intermingled basins~Fig. 2!.
The interval ofp1,p,p2 is characterized by on-off inter-
mittent transients withA1 as the only final attractor~Fig. 3!.
When p is decreased belowp1, both A

1 and A2 are no
longer global attractors, and the system exhibits sustained
on-off intermittency. Moreover, the on-off intermittent tem-
poral behavior has the character that the intermittent trajec-
tory communicates betweenA1 andA2. In example 2 below
we will further illustrate the significance of this type of com-
munication phenomenon in relation to the existence of inter-
mingled basins.

In the terminology of Ref.@8#, the transition atp5p1 is a
nonhysteretic blowout bifurcation, and the transition at
p5p2 is a hysteretic blowout bifurcation. It is interesting to

note that by varying a single parameterp one can achieve
both bifurcations in the same system.

Example 2. Now we consider a coupled map system ex-
pressed as

xn115 f ~xn!1e@ f ~yn!2 f ~xn!#2p@ f ~yn!
32 f ~xn!

3#,
~4!

yn115 f ~yn!1e@ f ~xn!2 f ~yn!#2p@ f ~xn!
32 f ~yn!

3#,
~5!

where f (x)5ax(12x2)e2x2. The phase space is the two
dimensional plane (m52). For a53.4 the individual map
xn115 f (xn) has two chaotic attractors, one in the region
x.0 which we denoteA1, and the other in the region
x,0 which we denoteA2. These two attractors are symmet-
ric with respect tox50. ~This symmetry is not relevant for
the existence of intermingled basins.! Clearly, if xn5yn is
plugged into Eqs.~4! and ~5!, the equations are satisfied,
meaning that we can have synchronized chaos. The synchro-
nization manifold, defined byx5y, is one dimensional
(n51), and is invariant under the dynamics. WhetherA1

FIG. 3. On-off intermittent transient for the coupled Duffing
oscillator for p1,p50.195,p2 ~a!. Note the communication be-
havior betweenA1 andA2 by the trajectoryx in ~b!.

FIG. 4. Sustained on-off intermittency for the coupled Duffing
oscillator for p50.19,p1 ~a!. Note the communication behavior
betweenA1 andA2 by the trajectoryx in ~b!.
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andA2 are also attractors for the full two dimensional space
is determined by their transversal Lyapunov exponents.

We present the transversal Lyapunov exponents as a func-
tion of e in Fig. 5. Here we letp5e. Since the coupling used
in Eqs.~4! and~5! preserves the symmetry betweenA1 and
A2, the two transversal Lyapunov exponents are identical.
The two transition pointse1 and e2 are found to be at
e150.4701 ande250.5940. Fore1,e,e2, both A

1 and
A2 are global attractors. In Fig. 6 we present evidence sup-
porting the claim that their basins of attraction are inter-
mingled. Heree50.48. To produce this figure we use a
4003400 uniform grid. If an initial condition on the grid,
after 10 000 iterations, goes toA2, we plot a dot at the point,
and if an initial condition goes toA1 we leave the point
blank. The result is a finely mixed structure of black and
white points. Although not included in this paper, magnifi-
cations of any regions in the picture show qualitatively the
same result. Further supporting evidence of intermingling is

FIG. 5. The largest transversal Lyapunov exponent forA1 and
A2. The model is the coupled map, Eqs.~4! and ~5!, and the two
parameters are related byp5e.

FIG. 6. The basin structure for the coupled map. The inter-
mingled character of the basins is apparent. Here
e1,e5p50.48,e2.

FIG. 7. Sustained on-off intermittency for the coupled map for
e5p50.46,e1 ~a!. Again note the communication behavior be-
tweenA1 andA2 by the trajectoryx in ~b!.

FIG. 8. The largest transversal Lyapunov exponent forA1 and
A2. The model is the coupled map, Eqs.~4! and ~5!, and we set
p50.1.
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furnished by the on-off intermittency behavior ate50.46,
which is slightly belowe1. At this parameter value both
A1 andA2 are no longer global attractors. Figure 7 shows
the temporal dynamics of the variablex2y @Fig. 7~a!# and
the variablex @Fig. 7~b!#. The on-off intermittent character is
apparent in Fig. 7~a!. More importantly, in Fig. 7~b! we ob-
serve the communication phenomenon by the trajectory be-
tweenA1 andA2. As mentioned earlier, this is an essential
ingredient for predicting the existence of intermingled basins

for nearby parameter values. It can also serve as a cue in an
experiment, since intermittency is relatively more direct to
observe than intermingled basins.

Our next result is designed to further illustrate the signifi-
cant of the communication phenomenon. Letp50.1. The
transversal Lyapunov exponent as a function ofe is shown in
Fig. 8, where e150.3296 and e250.8924. For
e50.329,e1, bothA

1 andA2 are unstable in the transver-
sal direction, and we observe sustained on-off intermittency
in the variablex2y @Fig. 9~a!#. But, as shown in Fig. 9~b!,
the intermittent trajectory stays only on the side ofA1. Due
to the symmetry, intermittent trajectories started on the side
of A2 will also remain on that side for all time. In other
words, no communication takes place betweenA1 andA2.
It is thus not surprising that whenA1 andA2 both become
global attractors ate50.34, which lies slightly abovee1,
their basins of attraction are not intermingled. Indeed, as
shown in Fig. 10, both basins of attraction are solid regions
of either black points or white points. This demonstrates our
notion that intermingled basins do not occur if the on-off
intermittent trajectory on the other side of the transition point
exhibits no communication between the two restricted attrac-
tors.
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