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Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos
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Recent work has shown that chaotic systems possessing invariant manifolds of lower dimension than that of
the full phase space can exhibit an interesting class of phenomena including riddled basins, intermingled basins
and on-off intermittency. In particular, if a physical system is characterized by intermingled basins, no finite
computation can determine the fate of an exactly given initial condition. In other words, the dynamics is
uncomputable. In this work we wish to show that intermingled basins can be easily realized in the context of
coupled oscillators and synchronized chaos. This opens the possibility of investigating these phenomena in
laboratory experiment$S1063-651X96)08809-5

PACS numbds): 05.45+b

Consider anm-dimensional dynamical system that pos- X+ ux+ a(x—x3)=A sin(ot). )
sesses am-dimensional invariant manifold whera<<m.
Here by invariant we mean that a trajectory initialized in theFor ©=0.632,¢=—4,A=1.011, andv=2.1235, this equa-
manifold stays there for all time. Suppose that the dynamicsion has two chaotic attractof8], one lying in the region
restricted to the invariant manifold has two or more chaoticx>0 which we denoteA™, and the other in the region
attractors. Depending on how small perturbations transversal<0 which we denoteA™. The coupled Duffing oscillator
to the manifold behave under the equations of motion, theswe treat in this example is written as
restricted attractors may or may not be attractors for the full
phase space. Recently, it has been shown that, when theseX+ ux+ a(x—x3)+p(x—y)+q(x*—y?) =A sin(wt),
restricted attractors are also attractors for the full system, 2
under certain conditions, their basins of attraction are inter-
mingled[1-3]. By this we mean that the basins are so finely ¥+ uy+a(y—y3)+p(y—x)+q(y>—x?)=A sin(wt).
mixed that every point in the basin of one attractor has points 3
from the basins of other attractors arbitrarily nearby, and vice ) o o ) )
versa. It is further pointed out in Ref3] that when this type Our experience indicates that it is essential to include non-
of basin structure occurs, the system’s dynamics becoménear coupling terms in this model for the occurrence of
qualitatively undecidablg4]. That is, no finite computation intermingled basins. In what follows we fig=0.005 and
can determine the fate of a typical initial condition even if vary p as a parameter. All other parameters have values as
that initial condition is given with infinite precision. given above. This coupled oscillator is a five dimensional
Much of our current understanding of the characteristicssystem. Strobing the equations at tinigs n27/w, we ob-
of intermingled basins is obtained through the study of disiain a four dimensional Poincaneap (m=4) forx, x, y, and
crete mapg1]. Sommerer and O3] examine a physical Y- We henceforth carry out our discussion in terms of this
model displaying intermingled basins in which a particle Poincaremap.
moves under periodic forcing in a two-dimensional potential. In the absence of coupling the two oscillators are identi-
A similar physical system with multiple invariant manifolds cal. Note that ifx(t)=y(t) is plugged into Eqs(2) and(3),
is considered by Lai and Grebogi in REZ]. In this paper we the equations are satisfied, meaning that synchronization of
report our observation of intermingled basins in systems ofhaos is possible for the system. The two dimensional syn-
coupled nonlinear oscillations exhibiting synchronizedchronization manifold if=2) is defined byx=y andx=y,
chaos. Here the synchronization manifold is the requisiténd is invariant under the dynamics. In the synchronization
lower dimensional invariant manifold. Given that the litera- manifold the dynamics is identical to that of a single Duffing
ture is replete with examples of coupled physical device®scillator. That is, there are two chaotic attractors in this
(e.g., nonlinear circuitsdisplaying synchronized chaotic be- manifold denoted byA™ andA™. To determine whether the
havior, we thus believe that our result helps to pave the wagynchronization manifold is attracting, that is, to determine
for future experimental investigations of intermingled basinswhetherA™ andA™ are attractors in the full phase space, we
and related phenomena. We illustrate our main point usingompute the largest transversal Lyapunov exponents as a
two examples, one a coupled Duffing oscillator and the othefunction of p for both attractors. The result is displayed in
a coupled map. The reader is referred to Rg8s6] for a  Fig. 1, with the solid line forA™ and the dashed line for
sample of works dealing with other topics such as riddledA™. The values ofp, and p, are determined to be
basins and on-off intermittency that also arise in systemg;=0.1946 andp,=0.2103. Forp>p,, both largest trans-

having invariant manifolds of lower dimensions. versal Lyapunov exponents are negative, indicating Avat
Example 1: The Coupled Duffing OscillatéWe express a andA™ are global attractor6n the sense of Milnof7]). Our
single periodically driven Duffing oscillator as numerical basin result in Fig. 2 strongly suggests that their
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FIG. 1. The largest transversal Lyapunov exponent Aor
(solid line and for A* (dashed ling The model is the coupled
Duffing oscillator Eqs(2) and (3).

basins of attraction are intermingled. Specifically, let
p=0.25 and consider a two dimensional plane defined by
y=x+d andy=x. This plane is parallel to the synchroniza-
tion manifold,x=y andx=Yy, which is also a two dimen-
sional plane. The distance between the two parallel planes is
d. For Fig. 2 we usa=0.01. The horizontal axis is and

the vertical axis isx. The initial conditions are placed on a -0.90 -0.78 -0.66 -0.54
uniform grid of 300x 300 points. If a point in this grid goes 1504
to the attractoA™ after 400 periods of external driving, we (c) :
plot a dot at the point, and if a point goes to the attractor
A" we leave the point blank. Longer iteration times are also
used in our numerical simulations, and they yield similar
results. Since the plane used in Fig. 2 is rather close to the
synchronization manifold, the basin structure in Figa)2
roughly resembles that of a single Duffing oscilldteee Fig.

2(a) of Ref.[3]]. The important difference here is that both
basins contain no solid regions. This is demonstrated using -1.548
two successive enlargements in Figgb)2and Zc). At a

given resolution one may find some regions showing just one

color. Upon magnification, however, points belonging to the

other basin begin to emerge in the region. This process ap- -1.560 ;
pears to go orad infinitum implying that neither basin con- -0.696 -0.684
tains solid regions. This result leads us to the conjecture that

the basins in Fig. 2 are intermingled.

Further evidence of intermingling is provided by examin-
ing the dynamics fop<p,. Specifically, forp;<p<p,, the
largest transversal Lyapunov exponentAor becomes posi-
tive, andA™ remains the only global attractor of the system.
A typical trajectory, before it finally settles oA™*, under-
goes an intermittent transient process in the variakye as  close to, sayA™ can move toA™ as time evolves, and vice
illustrated in Fig. 8a) wherep=0.195. The key point here is versa. This means that there are points which are arbitrarily
contained in Fig. &), where we see that the intermittent close to one attractor actually belong to the basin of the
trajectory jumps back and forth betwedd andA~ (a phe- other.
nomenon we call communicatinpnand comes arbitrarily For p<p, both A~ and A* become transversally un-
close to both of them during the process. The average lengtstable. Forp slightly less tharp, we observe sustained on-
of the transient gets longer pgyets closer t@, from below.  off intermittency an example of which is shown in Figay
This strongly indicates that ag is increased beyong,,  for p=0.19. Again during the on-off intermittent process the
from continuity, we can still expect that points arbitrarily trajectory communicates betweegd™ and A~ [Fig. 4(b)].

-1.536
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FIG. 2. The basin structures for the coupled Duffing oscillator.
(b) is the enlargement of the marked box (&, and (c) is the
enlargement of the marked box (h). The horizontal axis ix and
the vertical axis ix. Herep=0.25>p,.
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FIG. 4. Sustained on-off intermittency for the coupled Duffing
FIG. 3. On-off intermittent transient for the coupled Duffing oscillator for p=0.19<p; (a). Note the communication behavior
oscillator for p;<p=0.195<p, (a). Note the communication be- petweenA* andA~ by the trajectoryx in (b).
havior betweerA™ and A~ by the trajectoryx in (b).

note that by varying a single paramegrone can achieve
Note that, atp=0.19, the largest transversal Lyapunov ex-both bifurcations in the same system.
ponent forA™ is only slightly positive and is much smaller Example 2 Now we consider a coupled map system ex-
than that forA~. This means thaA™ is a much weaker pressed as
transversal repeller thaA™. Reflected in the temporal dy-

namics, the trajectory tends to stay longer n&arthan near Xnt1=F(Xn) + €[ F(Yn) = F (X)) 1= PLF (V)3 f(Xn) 2],

A, (4)
The findings we have made thus far can be summarized as

follows. Forp>p, we observe intermingled basi(Big. 2). Ynt1="F(Yn)+ e[ f(xn) = F(yn) 1= PLF(%0) > = f(yn)°],

The interval ofp;<p<p, is characterized by on-off inter- (5

mittent transients witiA ™ as the only final attractdiFig. 3). )
When p is decreased below;, both A* and A~ are no  where f(x)=ax(1—x?)e *". The phase space is the two
longer global attractors, and the system exhibits sustainedimensional planeri=2). For a=3.4 the individual map
on-off intermittency. Moreover, the on-off intermittent tem- X,;1="f(x,) has two chaotic attractors, one in the region
poral behavior has the character that the intermittent trajecx>0 which we denoteA™, and the other in the region
tory communicates betweekit andA~. In example 2 below x<0 which we denoté ™. These two attractors are symmet-
we will further illustrate the significance of this type of com- ric with respect tax=0. (This symmetry is not relevant for
munication phenomenon in relation to the existence of interthe existence of intermingled basin€learly, if x,=y, is
mingled basins. plugged into Egs(4) and (5), the equations are satisfied,
In the terminology of Ref[8], the transition ap=p, isa  meaning that we can have synchronized chaos. The synchro-
nonhysteretic blowout bifurcation, and the transition atnization manifold, defined byx=y, is one dimensional
p=p, is a hysteretic blowout bifurcation. It is interesting to (n=1), and is invariant under the dynamics. Whethker
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FIG. 5. The largest transversal Lyapunov exponent&érand (b)
A~. The model is the coupled map, Eq4) and (5), and the two
parameters are related lpy= €.

andA™ are also attractors for the full two dimensional space
is determined by their transversal Lyapunov exponents.

We present the transversal Lyapunov exponents as a func-
tion of € in Fig. 5. Here we lep= €. Since the coupling used
in Egs.(4) and(5) preserves the symmetry betwead and
A~, the two transversal Lyapunov exponents are identical.
The two transition pointse; and e, are found to be at
€,=0.4701 ande,=0.5940. Fore;<e<e,, both A™ and
A~ are global attractors. In Fig. 6 we present evidence sup-
porting the claim that their basins of attraction are inter-
mingled. Heree=0.48. To produce this figure we use a 0 2500 5000 7500 10000
400x 400 uniform grid. If an initial condition on the grid, n
after 10 000 iterations, goes £, we plot a dot at the point,
and if an initial condition goes t&\" we leave the point FIG. 7. Sustained on-off intermittency for the coupled map for
blank. The result is a finely mixed structure of black ande=p=0.46<¢, (a). Again note the communication behavior be-
white points. Although not included in this paper, magnifi- tweenA™ andA~ by the trajectoryx in (b).
cations of any regions in the picture show qualitatively the
same result. Further supporting evidence of intermingling is
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FIG. 6. The basin structure for the coupled map. The inter- FIG. 8. The largest transversal Lyapunov exponentAforand
mingled character of the basins is apparent. HereA . The model is the coupled map, Edd) and (5), and we set
€,<e=p=0.48<e,. p=0.1.



54 OBSERVATION OF INTERMINGLED BASINS IN ... 2493

1.0
(a) 0.4
0.5
0.2+
y 0.0
> 0.0
=
-0.5
-0.2+4
-1.0 T 1
-1.0 -05 0.0 0.5 1.0
0.4 T T T X
0 2500 5000 7500 10000 . . .
n FIG. 10. The basin structure for the coupled map is not inter-
mingled for the parameter setting,<e=0.34<e, and p=0.1.
(b) This is closely related to the fact that the on-off intermittent trajec-
tory in Fig. 9 does not exhibit communication between the two

restricted attractor&™* andA~.

for nearby parameter values. It can also serve as a cue in an
experiment, since intermittency is relatively more direct to
observe than intermingled basins.

Our next result is designed to further illustrate the signifi-
cant of the communication phenomenon. lpet0.1. The
0.5 transversal Lyapunov exponent as a functior &f shown in
Fig. 8, where €,=0.3296 and €,=0.8924. For
€=0.32% €,, bothA™ andA~ are unstable in the transver-
sal direction, and we observe sustained on-off intermittency
, : : in the variablex—y [Fig. 9a)]. But, as shown in Fig. ®),

0 2500 5000 7500 10000 the intermittent trajectory stays only on the sidefof. Due
n to the symmetry, intermittent trajectories started on the side
of A~ will also remain on that side for all time. In other

FIG. 9. Sustained on-off intermittency for the coupled map forwords, no communication takes place betwéehand A~
€=0.329<¢, and+p=0.1£a). Note thelack of communication be- 1 js thus not surprising that wheA* and A~ both become
havior betweerA™ andA™ by the trajectory in (b). global attractors at=0.34, which lies slightly above,
their basins of attraction are not intermingled. Indeed, as
shown in Fig. 10, both basins of attraction are solid regions
of either black points or white points. This demonstrates our
notion that intermingled basins do not occur if the on-off
intermittent trajectory on the other side of the transition point

the var|ablle< ['F|g. D)]. The on-off Intermittent character is exhibits no communication between the two restricted attrac-
apparent in Fig. (&). More importantly, in Fig. #) we ob- tors

serve the communication phenomenon by the trajectory be-
tweenA* andA~. As mentioned earlier, this is an essential  This work was supported by the U.S. Office of Naval
ingredient for predicting the existence of intermingled basinResearch.

-1.04

furnished by the on-off intermittency behavior &t 0.46,
which is slightly belowe;. At this parameter value both
A" andA~ are no longer global attractors. Figure 7 shows
the temporal dynamics of the variable-y [Fig. 7(a)] and
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